How to setup Bluetooth
This HOWTO tells you how to install and configure Bluetooth on your Linux driven ThinkPad and how to make the most common Bluetooth applications (like connecting your mobile phone etc.) work. |
BlueZ Installation
Building from source
Get the source packages from www.bluez.org.
Build each of them with the usual steps:
$ ./configure && make
# make install
Gentoo ebuilds
Under Gentoo, install the following ebuilds:
- net-wireless/bluez-bluefw
- net-wireless/bluez-firmware
- net-wireless/bluez-hcidump
- net-wireless/bluez-hciemu
- net-wireless/bluez-libs
- net-wireless/bluez-utils
Other distributions
You will find packages for Debian, Red Hat and Slackware on the packages page of the BlueZ project.
Configuring the kernel
Since the Bluetooth card is connected to the USB subsystem, you will need to enable USB support in your kernel:
- Device Drivers → USB support → <M>Support for Host-side USB (CONFIG_USB)
- Device Drivers → USB support → [*]USB device file system (CONFIG_USB_DEVICEFS)
Choose an appropriate USB host driver, one of:
- Device Drivers → USB support → <M>EHCI HCD (USB 2.0) support (CONFIG_USB_EHCI_HCD)
- Device Drivers → USB support → <M>UHCI HCD support (CONFIG_USB_UHCI)
- Device Drivers → USB support → <M>OHCI HCD support (CONFIG_USB_OHCI)
Enable Bluetooth subsystem and drivers:
- Device Drivers → Networking support → <*>Bluetooth subsystem support (CONFIG_BT)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>L2CAP protocol support (CONFIG_BT_L2CAP)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>L2CAP protocol support (CONFIG_BT_L2CAP)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>SCO links support (CONFIG_BT_SCO)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>RFCOMM protocol support (CONFIG_BT_RFCOMM)
- Device Drivers → Networking support → Bluetooth subsystem support → [*]RFCOMM TTY support (CONFIG_BT_RFCOMM_TTY)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>BNEP protocol support (CONFIG_BT_BNEP)
- Device Drivers → Networking support → Bluetooth subsystem support → <*>HID protocol support (CONFIG_BT_HID)
- Device Drivers → Networking support → Bluetooth subsystem support → Bluetooth device drivers → <M>HCI USB driver (CONFIG_BT_HCIUSB)
- Device Drivers → Networking support → Bluetooth subsystem support → Bluetooth device drivers → [*]SCO (voice) support (CONFIG_BT_HCIUSB_SCO)
Make sure that the according modules are loaded:
# modprobe uhci_hcd ; modprobe ehci_hcd ; modprobe hci_usb
Serial connection over Bluetooth
One common application is to connect your mobile phone and use it as a modem to connect to the internet via GPRS or 3G (UMTS). A lot of phones do this through using AT-commands on a serial over Bluetooth connection.
By configuring /etc/bluetooth/rfcomm.conf correctly, you'll get a device /dev/rfcomm0.
Eventually one could use the command:
# rfcomm bind 0 00:15:A0:7A:90:F2 3
The hardware address should be replaced with that of your phone. If you don't know the hardware address of your phone yet, you can get it by running:
# hcitool scan
The last parameter ('3') is the channel to use. I spent quite some time fighting before I found out of that one; I didn't find it documented anywhere, but by running
# sdptool records 00:15:A0:7A:90:F2
I found channel 3 to be the right one for my phone. You will have to experiment to find the right one for your phone setup; for T-Mobile GSM/GPRS carrier in USA this is channel 1.
Now /dev/rfcomm0 exists.
At this point you can use an automatic dialing utility such as wvdial, editing the config file to point to the modem at /dev/rfcomm0, and everything should work just like a land line!
You may directly access the modem (i.e. by using minicom:)
$ minicom -s
set the serial device to be /dev/rfcomm0, choose 'exit' and then the AT-commands can be typed in. With my operator (Telenor, Norway) it seemed simple enough, I just entered
- ATDT *99#
and lots of cryptic letters started dancing across the screen, indicating a ppp session startup.
To configure pppd create /etc/ppp/peers/nokia with particularly those lines:
/dev/rfcomm0 connect '/usr/sbin/chat -v -f /etc/ppp/chat-nokia' debug 10.0.1.3 crtscts noipdefault ipcp-accept-local defaultroute novj nobsdcomp novjccomp nopcomp noaccomp usepeerdns
Furthermore, you need a simple chat script. Create /etc/ppp/chat-nokia:
'TIMEOUT' '5' 'ABORT' 'BUSY' 'ABORT' 'ERROR' 'ABORT' 'NO ANSWER' 'ABORT' 'NO CARRIER' 'ABORT' 'NO DIALTONE' 'ABORT' 'Invalid Login' 'ABORT' 'Login incorrect' 'ATZ' 'OK' 'ATDT*99#' '~--'
Run pppd with:
$ pppd call nokia
This should establish the internet connection.
For editing phonebook / ringtones / etc., the gammu utils (http://www.gamu.net) has been reported to work well, but this appears to be primarily for Nokia phones.
File Transfer
File transfers are accomplished through OBEX transfer, which I believe is basically an FTP over bluetooth connection. Once you have bonded with your phone (yes, I know you love your sexy RAZR, but here I mean paired it with your laptop via bluetooth), you can easily use "obexftp" to transfer files. As an example,
- obexftp -b 00:01:02:03:04:05 -l
will list the root directory of the phone with bluetooth address 00:01:02:03:04:05. Refer to the man page for more of the unique commands. What a wonderful interface! Unfortunately there doesn't seem to be a way to get a standard 'ftp' session using familiar commands (e.g. 'mget').
For a more user-friendly experience, you can use the kde tools, just launch
- kbtobexclient
for a file browser. In the Location: option put
- obex://[00:01:02:03:04:05]
to list the files. Note that the brackets *are* necessary. From there, you can list directories easily and batch download files.